If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-30000=0
a = 1; b = 5; c = -30000;
Δ = b2-4ac
Δ = 52-4·1·(-30000)
Δ = 120025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120025}=\sqrt{25*4801}=\sqrt{25}*\sqrt{4801}=5\sqrt{4801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{4801}}{2*1}=\frac{-5-5\sqrt{4801}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{4801}}{2*1}=\frac{-5+5\sqrt{4801}}{2} $
| 5s-40=45 | | 2(m+1)-3(m-5)=3 | | 0.65x+x=280 | | 2m+7=m+10 | | 36x2–1=0 | | 2x+4=−x+3 | | (1.15)^x=1000 | | 6(-3x+4)-4=2x+60 | | 5a=6(a-4)+2 | | 5(m-8)=3(m+2) | | 29=e+12 | | -3(x+5)-7=8 | | 4r2=100 | | (2+3x)°+62=360 | | 5x-3=(18-3)/x | | 5x-10=(18-3)/3 | | 5x-10=(@8-3)/3 | | -2(3-x)=-2(1+x) | | -3+3x+3=-2(1-x) | | 2(4x-8)=3x+4 | | 189-7(x-6)=7(x-1) | | {1}{2}x+3=-x+9 | | 382-14x=8(1-6x) | | 2/5/1/10=x/3/5 | | 5t^2-98t+490=0 | | 5t^2-98+490=0 | | 32/x=x/98 | | -6(x+3)-3(5x-6)=-4x | | 18/12=12/x | | 13x+10=3x-10 | | 5x=3x+8 | | 6(3x-8)+6x=6x-30 |